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Abstract. Prolongation structures of the supersymmetric sine-Gordon equation are dis- 
cussed. It will be shown that an infinite-dimensional superalgebra is associated with these 
structures and that a linear representation of the algebra gives the super Lax pairs of the 
equation. 

1. Introduction 

It is well known that completely integrable non-linear equations in two-dimensional 
spacetime have common features. They have Backlund transformations and an infinite 
number of conserved quantities. The standard approach to show the existence of such 
properties is the inverse scattering method. This method consists of a pair of linear 
auxiliary equations (the Lax pair), the integrability condition of which gives the 
non-linear equations. 

The prolongation method proposed by Estabrook and Wahlquist [ 11 has been 
shown to give a systematic way of finding the Lax pairs [2-61. Recently we have shown 
that the prolongation method reveals the existence of infinite-dimensional algebras 
(such as the Kac-Moody algebra and the Virasoro algebra) and associated non-linear 
equations (the sine-Gordon equation and the Ernst equation) [7]. It was shown also 
that linear representations of these algebras give the Lax pair of the equations. 

In this paper we will discuss prolongation structures of the non-linear equation, 
which includes fermion fields, and show that the prolongation method plays an 
important role in finding the Lax pairs of the equation. 

A standard way of incorporating fermion fields retaining complete integrability is 
the supersymmetric extension of the completely integrable bosonic system. An example 
of such an extension is the supersymmetric sine-Gordon equation. It was shown that 
this equation has an infinite number of conserved quantities [8] and the Lax pair [9-111. 

In the classical theory fermion fields have to be treated as odd elements of the 
Grassmann algebra. Then this model has fields with both characters of the Grassmann 
algebra (odd and even elements). This fact suggests that there are scattering parameters 
and pseudopotentials of both odd and even characters and that there is an infinite- 
dimensional superalgebra associated with this model. 

In the next section we will obtain differential equations which have to be satisfied 
when we prolong a differential system of the supersymmetric sine-Gordon equation. 
In 0 3 these equations are discussed algebraically in terms of vector fields on a 
supermanifold and an infinite-dimensional superalgebra will be defined. In 0 4 we will 
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show that a linear representation of the algebra provides the super Lax pairs of the 
supersymmetric sine-Gordon equation. 

2. Prolongation equations of the supersymmetric sine-Gordon model 

The supersymmetric sine-Gordon equation in two-dimensional spacetime is given by 

a,a,d = sin 4 -2i+,(L2 sin(4/2) 

where +, and G2 are odd elements of the Grassmann algebra. Then they have the 
following properties 

+ I ( X ) + l ( X )  = 0 

+ l ( X ) + Z ( X ’ )  + +Z(X’)+I(X)  = 0. 

+Z(X)+Z(X) = 0 
(2.2) 

These field equations are rewritten in terms of 2-forms a, and PI ( i  = 1,2) on a 
six-dimensional supermanifold with coordinates {4, T,  + 1 ,  ICl2, q, e} as 

P2=d+, ~ d r ~  - ~ 0 ~ ( 4 / 2 ) + 2  d~ ~ d 5 .  

da ,  E Z(a, P )  dPl E I ( a ,  P )  (2.4) 

As we can easily show, the differential system {a,, p , }  is closed 

where Z(a, p )  denotes an ideal generated by the set {az, 0,). 

1-forms Q’ and Cl” ( i  = 1,2 , .  . . r; p = 1,2 , .  . . , s )  
Now we will consider the prolongation of the differential system {a, p }  by adding 

0’=-dq’+F’(T,4 ,* ,4 ,W)d77+G’(T,4 ,  JI ,q ,w)dt  

Cl@ = -dw”+ @”(T, 4, +, 4, w )  d v  +Z”(T, 4, $9 4, w )  d e  
(2.5) 

where r and s are determined later. In (2.5) 4’ and u p  are called pseudopotentials. 
It is assumed that 4’ and w” are even and odd elements, respectively, of the Grassmann 
algebra. Then Q’, F’ and G‘ are even elements and Cl@, 0” and E@ are odd elements. 

The prolonged differential system {a, p, Q, Cl}  is generated on a ( r+4 ,  s + 
2)-dimensional supermanifold of {4, T, J12, q, w, q, e}. This differential system is 
not in general closed. Then the prolongation can be carried out, provided that Q’ and 
Cl” satisfy the integrability conditions 

( 2 . 6 ~ )  

(2.6 b )  

dQ’ E I ( a ,  P, 0, Cl) 

dfi@ E Z(a, P, 0, Cl) .  

From ( 2 . 6 ~ )  we have differential equations of F’ and G’: 

a,F’ = 0 d,G’ = o aJ2F’ = o a*, G’ = o ( 2 . 7 ~ )  
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and 

-Ga,F‘+ FJa,G’-Zpa,F’+ epa,G’-[sin 4 -2iI+h11+h2 sin(4/2)]a,F’ 

+c0~(4/2)$,a, ,F’+ d , G ‘  -c0~(4/2)I+h,a,G’ = O  (2.76) 

where a, = a/aq‘ and a, = a J a d  (the left derivative with U ’ ) .  

Equation (2.66) gives differential equations of Ow and a@: 
a,ep = o a#2ep = o a,XP = 0 a+J+ = 0 ( 2 . 8 ~ )  

and 

-Gzd,OF + Fza,I;* -I;”a,e’+ OuaUXp -[sin 4 sin(4/2)]a,0p 

+ C O S ( ~ / ~ ) + ! I ~ ~ + ! I ~ P  + rabzfi - C O S ( + / ~ ) $ , ~ , , X ~  = 0. (2.86) 

4 and w Equation (2.7a) and ( 2 . 8 ~ )  mean that F’ and 0, are functions of r, 
and that G‘ and X f i  are functions of 4, I+h2, 4 and w :  

F’ = F’(.rr, $1 9 4, 

6, = e F ( r ,   CL^, 9, U) 

G’ = G ’ ( 4 ,  Ccl2l4, U )  
(2.9) 

= X;”(4, $2 ,  4, U ) .  

Since ( = 0 and ( $2)2  = 0, we can represent F, G, 8 and Z as 

F‘ = FXT, 4, U )  + C ( r ,  4, U ) $ ,  

G’ = GA(A 4, U ) +  GX4,4,  U ) $ *  

= O,”(.rr, 4, U ) +  e : ( r ,  9, w)$1 

2’” = Z t ( 4 , 9 ,  U ) + X ( 4 ,  4, w ) $ *  

where FA, CA, 0: and Xr are even elements and F;, G;, 0: and X,” are odd elements. 
By introducing (2.10) into (2.7b) and (2.8b) we obtain the following differential 

equations: 

(F&3,+ e,”a,)Gb-(Gba,+I;ta,)Fb-sin 4a,F;+rabG;=0 

(F:a, - e:a,)Gb-(G~a,+I;,”a,)F1 -sin &3,Fi - c o s ( + / ~ ) G ; = O  

( F$aJ + eta,)  G; - (G-& - Era,) FA + Ta+G; + COS( 4/2) F; = 0 

(F:aJ - B:a,)G;+(G2a, -X;a,)F1+2i sin(4/2)a,Fb=O (2.11) 

(2.10) 

and 

(Fba, + e,”& )E,” - (Gba, + I;,”a,)e: -sin @,e,” + ra,Z,” = 0 

(Fia, - e;a,)~,”+(Gba,+X,”a,)e:+sin 4a,ey+c0~(4/2)I ;y  = O  

(Fba, + e,”a,)Xy + (Cia, -I;;a,)e,” +COS( 4/2)e: + nabX$’ = 0 

(F;a ,  - e;a,)I;; + (G;a, -I;;a,)e: + 2i sin(4/2)a,B,” = 0. 

(2.12) 

In order to prolong the differential system we have to integrate these differential 
equations. This problem will be solved algebraically in the next two sections. 
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3. The prolongation algebra 

Let us consider a supermanifold with local coordinates { s i ,  up} .  Vector fields A, B, 
A and i on this manifold are defined by 

where A and B are even elements and A and 2 are odd elements. 
These vector fields have the Lie brackets which are defined by 

a 
ab‘ [A, B ] = [ ( A i a i + A ” a , ) B ’ - ( B i a i +  B”a,)A’] - 

a 
am 

+[(Aiai+Auau)Bw -(Bidi+ B’av)Ap]-- 

and [A, i] = -[i, A]. 

fields are given in terms of F, G, 8 and X as 
Here we will choose vector fields A, B, A and fi so that components of these vector 

a a a B = G; i +  zg - a A = F ; ~ +  eg - as a w  p as au p 

a a a a 
as a m p  as a d ‘  i = GI ---; - 2 g  - A = F ;  7- 0: - 

(3.3) 

Then from (2.11), (2.12) and (3.2) we find that they satisfy the Lie brackets: 

[A, B] = sin 4aJ - ra,B 

where a d ,  a+h and aJ are defined by 

[A, i] = -c0~(4/2)A - r a , i  
(3.4) [A, B] =sin + a + i + c 0 ~ ( 4 / 2 ) i  [A, $]+ = -2i sin(4/2)a,A 
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From (3.4) we can show that these vector fields have the following forms: 

A = Xo+ vX, 

A = r i ,  B = Po sin(+/2)+ cos(+/2) 

B = Yo sin 4 + Yl cos 4 + Y2 
(3.5) 

where X,(i =0,  l ) ,  Y,(i=O, 1,2), go and 9, ( i = O ,  1) are vector fields which are 
independent of field variables 7 and 4. In (3.5) X,, Y, are even elements and go, ?, 
are odd elements and they satisfy the Lie brackets: 

[XO, Yo1 = Xl [XO, Y11= 0 [XO, Y2l= 0 

[Xl 7 Yo1 = Yl [Xl, Y11= - Yo [X,,  Y2l= 0 

[XO, 901 = o  [X,, el] = do [X, ,  ?O]=;?l (3.6) 

[X , ,  91]=-;?06, [rz,, Yo]=;Po [go, Y,]=;P1 

[go, Y*] = jf-l [io, Po]+ = -2ix1 [go, gl]+ =o.  
Here we have to notice that the subset of vector fields {Xo, X I ,  Yo, Y l }  satisfies the 
same prolongation algebra of the sine-Gordon equation. 

Thus the differential equations (2.11) and (2.12) are replaced by the incomplete 
algebra (3.6). Then it is necessary to find the representation of the algebra in spite of 
solving (2.11) and (2.12). 

Next we will consider a ( r  + s)-fold infinite-dimensional manifold with coordinates 
{ q ! ” ’ ;  i = 1,2, .  . . , r :  w:); p = 1,2, .  . . , s}, where n runs from -00 to +a, and define 
an infinite number of vector fields A;”, B$), r z ’  and r!:’ ( m  = 0, 11 ,  12 ,  . . . f 00) by 

where A!,”’ and EL:’ are even elements and F z ’  and 

infinite-dimensional superalgebra given by 

are odd elements. 
From (3.2) and (3.7) we can show that these four kinds of vector fields satisfy an 

[AI;’, Ac’ ]  = 8,kA$“’“’ - S I I A ~ ~ + “ )  

[ BK), E?,)] S A v B L ~ + ” ) -  8 f i , , B ~ ~ + ” ’  

[A!:’, B;:] = 0 

[A:;), r;;] = -8 ,kr;y+n)  

[r;:’, rL;)]+ = o  
[rz’, r;,”)], = s,,B:;+”’+ G ~ , , A ; : + ~ ) .  

[A:,”), rg)] = aJkr!;+“) 
[E“’ r:;)] = - 8  r jym+n)  [E:”,, r p ] =  8uArjry+n) P V  7 f i A  

[ rp ,  rj,”’], = o 

(3.8) 

In the following we restrict our considerations to a special case with r = s = 2, and 
discuss a subset of vector fields { MIm’, i = 1,2,3;  N‘m’, A:”, p = 0,1,2,3} defined by 
some linear combinations of A!;’, EL:’, rz ’  and I‘:;’: 

a 
a, b = 1, 2 Mj” = - 1 q F + m )  2 n=-m ( O o a b a q b ” ’  
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(3.9) 

where ut is the Pauli matrix and -iuo is the unit matrix. 

algebra 
It can be shown that this set of vector fields makes an infinite-dimensional supersub- 

[ Mj"'), M;"'] = iq,kM(km+n) [ M y ) ,  ""'1 = 0 

[ Mj"'), A:'] = fiJWvA:"'+") [N("'),  A:)] = fig,,A~"+") (3.10) 

[A;"", A y ) ]  + -  -2id 1,Y M~"+")+2i8,,N'"+"' 

where J P u ,  gWy and d,,, are represented in terms of 4 x 4 matrices f; = { J P y } ,  g = {gFY} ,  
dl = {dl,Y): 

0 (+2 
(3.11) 

g = (  0 1  ) d l = ( u l  O )  d 2 = (  0 i:) d3=(03  O ) .  
-1 0 0 U1 -1u2 0 U3 

In the next section we will show that (3.10) is the characteristic algebra associated 
with the supersymmetric sine-Gordon equation. 

4. The representation of the prolongation algebra and the super Lax pairs 

We will return to find the representation of the incomplete prolongation algebra (3.6) 
and to complete the prolongation structures of the supersymmetric sine-Gordon 
equation. 

We will identify elements of the prolongation algebra (3.6) Xi, l'., zo and gi with 
some elements of the infinite-dimensional superalgebra (3.10) as 

y - -M(-2 )  y - M5-2' X o  = MI2) + N ( * )  XI = Mio' 0- 1 1 -  
(4.1) 

Then we can easily show that all the Lie brackets of (3.6) are satisfied. This fact means 
that the prolongation algebra can be embedded in the algebra (3.10). 

y 2 -  - "-2'  go = iA\ ')  p 0 -  -A$- l )  cl =Ai- ' ) .  
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From (3.9) and (4.1) we can obtain the explicit representation of vector fields for 
the prolongation algebra 



1948 M Omote 

These results indicate that we can prolong the differential systems { a , p }  on the 
six-dimensional supermanifold { 4, T, q2,  7 , 5 }  to the differential system {a, p, Q, CL} 
on the infinite-dimensional supermanifold {+, r, t,h2, q!"', U:', 7, 5). 

Next we will introduce a A-dependent pseudopotential q , ( A ) ,  w f )  ( i  = 1,2; 
P = 1,2) by 

Then we can unify the infinite number of differential equations (4.4) - (4.7) into the 
following equations 

avq(A) = $[( l / A 2 ) a 3 +  iru2]q(A) - ( i / f i A  ) $ , w 2 w ( A )  

a g q ( A )  = A 2 (  -sin +U, +cos +a3)q(A)  - (A/fi)$,[sin(4/2)a3 + cos( 4/2)al]w(A) 

d,w(A) = ( 1/2A2)a,w(A) - (i/fiA)$,w,q(A) 

(4.9) 

(4.10) 
a p o ( A )  = (A2/2)a3w(A) - ( A / f i ) $ 2 [ i  sin(6/2)-cos(4/2)o2Iq(h) 

where 

(4.11) 

Equations (4.9) and (4.10) 
equation. When we introduce 

give the Lax pair of the supersymmetric sine-Gordon 
a two-component superfield @(a, 5, e), where O is the 

@(77,5,@) = 4(77,5)+ W 7 7 , 5 )  (4.12) 

Grassmann number ( f12 = 0), on the superspace with coordinates { q,[, e }  by 

we can represent (4.9) and (4.10) in the form 

iav@(77, 5 , e )  = L@(T,  5, e) 
idg%, 5, 0)  = K @ h ,  5, 0). 

(4.13) 

In (4.3) L and K are matrix-valued operators in the superspace and are defined by 

(4.14) 
L = L, + L2de i- OL, + OL4ae 

K = K 1  + K2de + OK, + OK4de 

where Li and Ki  are 2 x 2 matrices and are given by 

(4.15) 
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and 

(4.16) 

ih2 
2 

K1 = - (-sin 4ul +cos 4u3) 

i A 2  
2 

K l + K 4 = - u 3 .  

We can show that (4.13) is equivalent to the super Lax pair given in our previous 
paper [12]. Then we can conclude that the differential system of the supersymmetric 
sine-Gordon equation has the prolongation structure and that there is an infinite- 
dimensional superalgebra associated with the structure whose representation gives the 
super Lax pair of the equation. 

The scattering problem of the Lax pair for the supersymmetric sine-Gordon equation 
has been shown to be well defined in the superspace [12,13]. In the superspace 
formulation of the scattering problem an S matrix is defined by 

s =  s,+s2dB+es3+e(s,-s1)a, (4.17) 

where S,(i  = 1,2 ,3 ,4)  are 2 x 2 matrices and are expressed in terms of scattering 
parameters a i ( A ) ,  b i (A) ,  c i ( h ) ,  d i ( h )  ( i  = 1,2 ,3 ,4)  as 

(4.18) 

(4.19) 

where t = 7 - 6  and b = ; ( A 2 + 1 / A 2 ) .  Then we find scattering parameters a i ( A ) ( i =  
1,2,3,4)  do not change with time. By expanding these parameters into power series 
of A as follows: 

f h-'"fl-, PI-+* 

f h 2 " f l n  P I + O  

n = O  

n = O  

log a4(A)  = 

(4.20) 

(4.21) 

(4.22) 

we can show that all coefficients of the above expansions constitute sets of an infinite 
number of conserved quantities. 
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Some examples of these conserved quantities are given by 

H = 2i[( HI - R I )  - (H-, - 

P = -2i[ ( HI - a,) + (XI - a-])] 
QI = 8 ~ 5 i A - ~  Qz = - 8&& 

where Q1 , Q2 are generators of the supertransformations and have odd characters of 
the Grassmann algebra. 

Since it can be shown that other time-independent scattering parameters a,(A) and 
di ( i  = 1,2,3,4) are not independent of a l ( A ) ,  az (A)  and a, (A)  we can conclude that 
all bose-like and fermi-like conserved quantities of the supersymmetric sine-Gordon 
equation are given by H , , ,  a,,, and A+,,. 
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